CFBOA Case Study 6

1 The House

1.1 Construction

- The house is two-story, detached and was built in 1968.
- We bought and moved into the property in 1997 and are the 3rd owners.
- The walls are of cavity-wall construction with reconstituted stone block outer skin, a 50mm cavity and foamed concrete block inner skin.
- The cavity was originally un-insulated but foam insulation was installed at some stage.
- The roof is a split pitch design, finished in concrete tiles. Both pitches are at 15°. The smaller pitch and vertical 1.5m wall between the 2 ridges face SE and the larger pitch faces NW.
- There was 13mm of rockwool type insulation bonded to the inner face of the roofing felt.

1.2 Heating

- The house has warm-air central heating, with warm air ducted to each room from a central, fan-blown heat exchanger.
- The heat source was originally 3 phase electricity but the heating was converted to mains gas early in the life of the house.
- The gas Warm-Air-Unit (WAU) was replaced in 2018 by a high efficiency, mains gas powered condensing boiler, with a water to air heat exchanger to heat the circulating warm air.
- Hot water is provided by the WAU, with a back-up single element electric immersion heater.

CFBOA Case Study 6

2 Energy Efficiency Projects

2.1 1999 - Double Glazing

- By 1999 the original single glazed, timber framed windows and doors needed attention.
- We replaced all except the front door with double glazed, aluminium-framed units, using (for the time) energy efficient glass.

2.2 2018 - Draught Proofed Front Door

- The original single-glazed timber front door has two leaves and was quite draughty.
- We installed routed-in, permanent draught seal and double-glazed glass panels.

2.3 2020 - Insulation, PV and MVHR

2.3.1 Background

- For most of the roof there is no loft space, with the 1st floor ceiling being fixed directly to the underside of the rafters. This precludes a simple loft insulation upgrade, requiring removal of the ceiling or removal of the roof surface to install any insulation.
- By the end of 2019 we felt that the age of the roof (particularly the roofing felt) justified embarking on roof renovation, including installation of a modern level of insulation.
- We initially sought guidance from Futureproof (www.futureproof.uk.net). This is an initiative managed by Centre for Sustainable Energy (CSE) a Bristol based charity.
- Futureproof arranged for us to have an Energy Efficiency Report produced for our house by
 Mike Andrews of Energy Saving Experts (<u>www.energy-saving-experts.com</u>). This report
 provided an assessment of the house in its current state and a prioritised set of
 recommendations for actions that would improve the energy efficiency of the house.
- This Energy Efficiency Report guided our upgrade project
- Since 2019 Futureproof have expended the services they provide to include much more comprehensive support for new-build and retrofit projects such as ours.

2.3.2 The Upgrade Project

- Given the relatively complex nature of the roof replacement we engaged Nick Matthews as Surveyor (http://www.nickmatthewssurveying.co.uk/) to produce the design and manage the execution of the work.
- We selected Oliver Norton (<u>olivernorton@gmail.com</u>) as main contractor for the project.
- All the work primarily related to improving the insulation, including removal and replacement of the roof was 5% rated for VAT.

2.3.2.1 Insulation

- In replacing the roof surface we installed 210mm of rigid foam insulation; 150mm between the rafters and 60mm on top of the rafters.
- In the internal garage we installed insulation on the ceiling and walls for all surfaces that interfaced to the rest of the house.
- Attention was paid to achieve airtightness in the roof insulation replacement work

2.3.2.2 Solar Electricity Generation

• We selected Sungift (<u>www.sungiftenergy.co.uk</u>) to install our solar generation systems

CFBOA Case Study 6

- 11 PV panels were installed in the SE facing pitch and 6 panels on the NW pitch, totalling 6.04 kW generating capacity.
- A 5kW Inverter was installed. To permit connection to the Grid required approval from the DNO, Scottish and Southern Electricity Networks.
- A Tesla Powerwall 2 battery and gateway were installed, storing 13.5kWh of usable energy.

2.3.2.3 Mechanical Ventilation with Heat Recovery

- Improving the airtightness of the roof could have resulted in poor internal air quality.
- To address this in an energy efficient way we self-installed a Zehnder Q350 MVHR unit and associated ducting to control ventilation to the 1st floor rooms, the ground floor being inaccessible to ducting without intrusive work.

2.3.3 The Results

- Following completion of the work we engaged Mike Andrews to produce a new EPC for the property. This new EPC certificate showed we had achieved a rating of B (86), compared to the original D (59) rating before the work, all of which seems to validate the effort (and to some extent the cost) and is very pleasing.
- We have definitely felt increased heat retention of the house from the improved insulation.
- The PV has generated just over 5.1MW of electricity in the last 12 months. This exceeds the domestic consumption and contributes towards the charging of our electric vehicle.

Please contact cfboaenergy@gmail.com if you would like to more information about this case study.